Code: 20EE4701B

IV B.Tech - I Semester – Regular / Supplementary Examinations OCTOBER 2024

ENERGY CONSERVATION AND AUDIT (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
					Marks			
UNIT-I								
1	a)	Distinguish between renewable and non-	L2	CO1	7 M			
		renewable energies.						
	b)	Explain about energy intensity on PPP.	L3	CO2	7 M			
OR								
2	a)	Explain the importance of energy	L2	CO1	7 M			
		conservation.						
	b)	Discuss the effects of energy on	L3	CO2	7 M			
		environment.						
UNIT-II								
3	a)	Discuss the three types of energy audit.	L4	CO3	7 M			
	b)	Explain the process for computation of plant	L2	CO1	7 M			
		energy performance.						
OR								

4	a)	Mention two examples each for the	L4	CO3	6 M		
		following processes.					
		(i) Maximizing system efficiencies.					
		(ii) Fuel and energy substitution.					
	b)	Explain the function of the following energy	L4	CO3	8 M		
		audit instruments.					
		(i) Non-Contact Infrared Thermometer					
		(ii) Combustion Gas Analyzer					
		(iii) Fyrite					
		(iv) Lux meter					
UNIT-III							
5	a)	Discuss the steps involved in maximum	L2	CO1	8 M		
	1 \	demand control.	.	G 0 4	43.5		
	b)	Discuss the cost benefits of power factor	L3	CO4	6 M		
		improvement.					
		OR	T 0	004	7.14		
6	a)		L3	CO4	7 M		
	1 \	efficiency. How do you minimize them?	T 0	004	7.14		
	b)	Discuss the effect of rewinding a motor on	L3	CO4	7 M		
		its energy efficiency.					
		UNIT-IV					
7	a)		L2	CO1	7 M		
		compressed air system.			, 414		
	b)	1	L3	CO4	7 M		
		performance and saving opportunities in air	-		_		
		conditioning.					
	OR						
<u></u>							

8	a)	Discuss the types of blowers.	L2	CO1	7 M				
	b)	Explain the energy saving opportunities for	L3	CO4	7 M				
		a fans and blowers.							
	UNIT-V								
9	a)	Explain the significance of energy efficient	L4	CO5	7 M				
		motor in energy saving.							
	b)	Discuss the importance of energy efficient	L4	CO5	7 M				
		lighting controls and its role in saving							
		energy.							
OR									
10	a)	Explain the role of occupancy sensors in	L2	CO5	7 M				
		energy saving.							
	b)	Explain the role of variable speed drives in	L4	CO5	7 M				
		energy saving.							